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Abstract

Bayesian analysis is firmly grounded in the science of probability and has been increasingly 

supplementing or replacing traditional approaches based on P values. In this review, we present 

gradually more complex examples, along with programming code and data sets, to show how 

Bayesian analysis takes evidence from randomized clinical trials to update what is already known 

about specific treatments in cardiovascular medicine. In the example of revascularization choices 

for diabetic patients who have multivessel coronary artery disease, we combine the results of the 

FREEDOM trial (Future Revascularization Evaluation in Patients with Diabetes Mellitus: Optimal 

Management of Multivessel Disease) with prior probability distributions to show how strongly we 

should believe in the new Class I recommendation (“should be done”) for a preference of bypass 

surgery over percutaneous coronary intervention. In the debate about the duration of dual 

antiplatelet therapy after drug-eluting stent implantation, we avoid a common pitfall in traditional 

meta-analysis and create a network of randomized clinical trials to compare outcomes after 

specific treatment durations. Although we find no credible increase in mortality, we affirm the 

tradeoff between increased bleeding and reduced myocardial infarctions with prolonged dual 

antiplatelet therapy, findings that support the new Class IIb recommendation (“may be 

considered”) to extend dual antiplatelet therapy after drug-eluting stent implantation. In the 

decision between culprit artery-only and multivessel percutaneous coronary intervention in 

patients with ST-segment elevation myocardial infarction, we use hierarchical meta-analysis to 

analyze evidence from observational studies and randomized clinical trials and find that the 

probability of all-cause mortality at longest follow-up is similar after both strategies, a finding that 

challenges the older ban against noninfarct-artery intervention during primary percutaneous 

coronary intervention. These examples illustrate how Bayesian analysis integrates new trial 

information with existing knowledge to reduce uncertainty and change attitudes about treatments 

in cardiovascular medicine.

Correspondence to John A. Bittl, MD, Munroe Regional Medical Center, 1221 SE 5th St, Ocala, FL. jabittl@mac.com. 

The findings and conclusions in this paper are those of the authors and do not necessarily represent the official views of the National 
Center for Health Statistics, US Centers for Disease Control and Prevention.

The Data Supplement is available at http://circoutcomes.ahajournals.org/lookup/suppl/doi:10.1161/CIRCOUTCOMES.117.003563/-/
DC1.

Disclosures
None.

HHS Public Access
Author manuscript
Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2019 March 18.

Published in final edited form as:
Circ Cardiovasc Qual Outcomes. 2017 August ; 10(8): . doi:10.1161/CIRCOUTCOMES.117.003563.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://circoutcomes.ahajournals.org/lookup/suppl/doi:10.1161/CIRCOUTCOMES.117.003563/-/DC1
http://circoutcomes.ahajournals.org/lookup/suppl/doi:10.1161/CIRCOUTCOMES.117.003563/-/DC1


Keywords

Bayes theorem; diabetes mellitus; probability; statistical distributions; statistics

“The past is prologue.”

—William Shakespeare, in The Tempest

Two prominent schools of thought exist in statistics: the Bayesian and the classical (also 

known as the frequentist). The Bayesian approach, which is based on a noncontroversial 

formula that explains how existing evidence should be updated in light of new data,1 keeps 

statistics in the realm of the self-contained mathematical subject of probability in which 

every unambiguous question has a unique answer—even if it is hard to find.2 The classical 

approach, which relies on a frequency definition of probability based on long-run properties 

of repeated events, is grounded in the concept of the P value and may sometimes entail 

several reasonable approaches that yield different answers based on the question at hand.
1,3–5

Meaning of the P Value

The concept of the P value dates to the 1920s and 1930s, when statisticians recognized that 

the bell-shaped curve can represent the distribution of a test statistic for all possible 

outcomes of an experiment, given that the null hypothesis H0 is true. Sir Ronald Fisher 

reasoned that a small P value corresponding to the tail under the frequency-distribution 

curve meant that either an exceptionally rare outcome of an experiment had occurred, or the 

H0 was not true.6

To many practitioners and some statisticians, a P value of 0.05 means that there is a 95% 

chance that the null hypothesis H0 is false. This is understandable but wrong because the P 
value is calculated on the assumption that the H0 is true.4 The upshot is that the P value is 

NOT the probability that H0 is true, and 1−P is NOT the probability that the alternative 

hypothesis HA is true.1,7 Instead, the P value is the proportion of times an observed event, or 

a more extreme event, will occur in a series of repetitions, given that the null hypothesis is 

true. In practice, the P value defines an error limit that prevents a statistician from wrongly 

rejecting a true H0 only ≈5% of the time in the long run in, say, his or her career.1

Re-Emergence of Bayesian Analysis

Bayes’ rule predated the use of P values by ≈150 years, but frequentist approaches have 

predominated statistical analysis for most of the past century. During the past 30 years, 

several scientific disciplines like engineering,2 astrophysics,8 and genetics9 have 

supplemented or replaced frequentist statistics with Bayesian approaches.

In clinical reasoning, Bayes’ rule is crucial for explaining how the probability of disease 

depends on both pretest probability and a test result (Appendix A in the Data Supplement).3 

Bayesian analysis is now appearing in clinical trials, and in a major shift, the American 

College of Cardiology and American Heart Association have recently proposed using 

Bayesian analysis to create clinical practice guidelines.10 In an early exercise, Bayesian 
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methods supported the usefulness of percutaneous coronary intervention (PCI) for left main 

coronary artery disease (Appendix B in the Data Supplement).11

Bayesian Methods for Clinical Trial Analysis

If we suppose that θ is a theoretical parameter denoted by the log odds ratio (OR), loge OR, 

which summarizes the mortality difference between a new therapy and control, prior 

knowledge about θ from existing randomized clinical trials (RCTs) is denoted by p(θ). The 

prior probability p(θ) may take the form of a bell-shaped curve to show that some values of 

θ are more probable than others. When we observe some new trial evidence y, which is 

commonly presented in the form of an OR but for mathematical consistency analyzed as 

loge (OR) and presumed to be conditional on θ, we represent the relation by p(y|θ) and call 

it the likelihood.1–3,12,13

In Bayesian analysis, θ is a random variable, but in frequentist statistics, the parameter θ is a 

fixed but unknown value.1,12 In both statistical approaches, y depends on θ, but in a 

Bayesian framework, the likelihood p(y|θ) describes the conditional probability of y for each 

possible value of θ. The likelihood may assume any mathematical function, but continuous 

data are commonly represented with a normal distribution (N):

loge OR N θ, V ], (1)

where θ represents the underlying hypothesis about the treatment effect and V is its variance 

(Appendix B in the Data Supplement).1–3,12,13

To see how a new trial updates our understanding of θ, we need to move from the 

probability of the new data y given the underlying hypothesis θ to the probability of the 

underlying hypothesis θ given the new data y,13 and this is achieved by using Bayes’ 

theorem2,3:

p θ y = p y θ ⋅ p θ
p y ,

= p y θ ⋅ p θ
∑p y θ ⋅ p θ ,

= p y θ ⋅ p θ
∫ p y θ ⋅ p θ ⋅ dθ .

(2)

The posterior P(θ|y) on the left-hand side of the equation increases when there is a strong 

pre-existing belief in the hypothesis θ or strong new evidence y. The denominator, given by 

various forms of P(y), plays a normalizing role so that P(θ|y) integrates to 1. The importance 

of normalization emerges in a familiar example from clinical reasoning when the number of 

true positives is divided by the sum of true and false positives to calculate P(θ|y), which is 

the probability of disease θ given a test result y (Appendix A in the Data Supplement).

Bayesian analysis often entails complex computations. Until recently, user-friendly software 

had been scarce, but the availability of high-speed laptop computers and Markov chain 
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Monte Carlo modeling has made the approach more accessible. For the practitioner 

considering Bayesian analysis, minimal requirements include a dim knowledge of basic 

calculus,13 the ability to think in logarithms, and the allure of writing code for statistical 

programs like [R],14 an open-source program that links applications running Bayesian 

inference Using Gibbs Sampling (BUGS). As a benefit, [R] is free of charge, capable of 

generating stunning graphics, and ready to install (Appendix B in the Data Supplement).

The present review starts with a simple example that uses normal probability distributions to 

illustrate how Bayesian analysis combines information from various sources. This is 

followed by gradually more complex examples that use hierarchical, network, and cross-

design analyses to tackle issues that may not be amenable to traditional statistics. The aim of 

the review is (1) to identify parallels between Bayesian and traditional approaches and (2) to 

describe statistical tools firmly grounded in probability that help to discover what works in 

cardiovascular medicine.

Methods

To perform traditional meta-analyses, we use the open-source statistical program [R] 3.0.314 

and library package meta 3.8–0.15 To generate conjugate-normal models, we combine 

normal probability distributions from older trial data (prior) and new trial results (likelihood) 

to generate the posterior (Appendix C in the Data Supplement).3 To perform more complex 

computations, we use a version of BUGS called OpenBUGS13,16 that allows Markov chain 

Monte Carlo modeling to specify the posterior distribution (Appendixes D and E in the Data 

Supplement). In the Data Supplement, we show how BRugs16 connects [R] with 

OpenBUGS to draw samples from any posterior distribution. When we use Markov chain 

Monte Carlo modeling, we base the posterior inference on 10 000 draws of the Gibbs chain.
3,13

Results

What Form of Revascularization Is Preferred for Diabetic Patients With Multivessel 
Coronary Artery Disease?

Conjugate-Normal Analysis—For patients with diabetes mellitus and multivessel 

coronary artery disease (CAD) requiring revascularization, the 2011 guideline stated that,17 

“Coronary artery bypass graft (CABG) surgery is probably recommended in preference to 

PCI to improve survival in patients with multivessel CAD and diabetes mellitus, particularly 

if a LIMA graft can be anastomosed to the LAD artery (Class IIa; Level of Evidence B).”

In 2012, the results of the FREEDOM trial (Future Revascularization Evaluation in Patients 

with Diabetes Mellitus: Optimal Management of Multivessel Disease) appeared.18 Although 

FREEDOM was a dedicated trial of diabetic patients with multivessel CAD, the finding of 

borderline lower mortality after CABG than after PCI at 5 years (relative risk, 0.63; 

P=0.049) was not considered definitive, because a P value of 0.044 was predefined as the 

cutoff for the primary end point, and the trial was not powered for mortality.18
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A traditional meta-analysis of 8 trials including FREEDOM suggested that CABG was 

superior to PCI, but only 2 of 8 trials had significant P values favoring surgery.19 To show 

how strongly the borderline results from FREEDOM changed the probability of surgical 

superiority, we use Bayesian analysis to establish20,21:

• the plausibility of a surgical advantage based on evidence from older RCTs (the 

prior distribution),22–29

• support for a surgical advantage from the FREEDOM trial itself (likelihood),18 

and a

• final opinion about the advantage of CABG over PCI (the posterior distribution).

As outlined in the Table and detailed in Appendix C in the Data Supplement, Bayesian 

methods combine information from different sources and generate a posterior inference that 

is a compromise between the prior and the data.1 As shown in Figure 1, the posterior 

inference contains a maximum (mode) at 0.58 with a 95% Bayesian credible interval (BCI) 

that extends from 0.48 to 0.71.

Compared with traditional statistics, which uses a frequency definition of probability for the 

null hypothesis H0, Bayesian analysis generates direct probability statements about the 

treatment hypothesis, which is arguably more interesting than the null. In this instance, the 

Bayesian approach identifies with 95% probability that mortality is 29% to 52% lower after 

CABG than it is after PCI. More precisely, the Bayesian approach identifies with 99.9%, 

99.9%, and 96.8% probabilities that mortality rates are at least 10%, 20%, or 30% lower 

after CABG than they are after PCI. The strength of evidence for CABG can also be 

expressed by the Bayes factor, which uses small values close to 0.00 to simultaneously 

provide strong evidence against the H0 and for the HA (Appendix C in the Data 

Supplement).3,31 In this exercise, the Bayes factor is 0.01, a value that is defined as decisive 

evidence favoring CABG.3

Skeptical and Noninformative Priors—Some critics are concerned that selecting a 

prior for Bayesian analysis is a subjective process, but 8 RCTs are the source of evidence for 

the prior in the present example (Figure 1A). If we think that this prior is too enthusiastic, 

we can repeat the analysis using a skeptical prior centered at a θ of 0.00 to simulate the null 

hypothesis and find weaker (posterior OR, 0.82; 95% BCI, 0.67–1.00) but credible support 

for CABG over PCI (Figure 1B).

If we start with even greater indifference about the superiority of CABG and use a 

noninformative prior to reflect the belief that all values of θ are equally likely (ie, 

equipoise), we let the likelihood of the data dominate the posterior inference. When this 

happens, we get a remarkable result. As shown in Figure 2, a Bayesian hierarchical meta-

analysis that starts with a noninformative prior generates a posterior inference (posterior OR, 

0.55; 95% BCI, 0.37–0.76) that converges with the result obtained in a traditional meta-

analysis (OR, 0.54; 95% confidence interval, 0.38–0.76). Such coincidences are expected 

when the traditional random-effects model uses an empirical Bayesian approach to estimate 

between-trial variation.32 The similarity turns out to be a convenience for practitioners who 

erroneously use Bayesian language to describe traditional confidence intervals.3
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Strength of Evidence—In a normal distribution, the strength of evidence is represented 

by curve width. Narrower curves exclude more values for θ and thus represent stronger 

sources of evidence than broader curves.1 Compared with a noninformative prior or a 

traditional meta-analysis (Figure 3), an informative prior usually produces tighter intervals 

in the posterior inference, because the posterior borrows information from the prior.3

The present example illustrates strengths and limitations of Bayesian analysis. Although a 

conjugate-normal model is not fully Bayesian, and a narrower interval does not 

automatically signify a superior approach,3 an approach based on probability distributions 

overcomes the reliance on P values. Additional strengths include the ability to obtain direct 

probability statements about the treatment hypothesis and to see how changes in existing 

knowledge influence the interpretation of new data. Although this may not seem novel when 

the Bayesian result converges with the frequentist,19 Bayesian analysis in this instance 

supports the new Class I recommendation in the American College of Cardiology/American 

Heart Association guideline update for a preference for CABG over PCI.33 In the next 

section, we show how a Bayesian mixed-treatment analysis compares treatments indirectly 

when direct comparisons do not exist.

What Is the Optimal Duration of Dual Antiplatelet Therapy After Drug-Eluting Stent 
Implantation?

Bayesian Network Meta-Analysis—Although aspirin and a platelet P2Y12 inhibitor 

may prevent thrombotic complications after drug-eluting stent (DES) implantation, the 

combined use of 2 antiplatelet agents may increase bleeding. After an authoritative trial34 

found a borderline increase in all-cause mortality with prolonged dual antiplatelet therapy 

(DAPT), several investigators performed traditional meta-analyses to determine whether 

prolonged DAPT was associated with increased mortality using the pooled evidence from 

multiple RCTs, but results were mixed.35–37 Because each individual RCT compared 

pairwise DAPT durations that varied widely (Figure 4),34,38–50 with a DAPT duration of 12 

months being defined as short in 4 trials34,44–47 and long in 7 trials,38–44 the traditional 

meta-analyses35–37 contained several 12-month-versus-12-month comparisons.

Relative Differences—To compare outcomes using a coherent separation of DAPT 

durations, we define a network (Figure 4).3 When the network is analyzed using methods 

outlined in the Table and Appendix D in the Data Supplement, we show in Figure 5 that 

mortality is not increased when DAPT increased from 3–6 to 12 months (OR, 1.06; 95% 

BCI, 0.76–1.40), from 12 to 18–48 months (OR, 1.19; 95% BCI, 0.88–1.63), or from 3–6 to 

18–48 months (OR, 1.25; 95% BCI, 0.89–1.81). However, bleeding increases, and the risk of 

myocardial infarctions falls as the duration of DAPT increases (Figure 5).

The network findings provide reassurance that DAPT does not increase all-cause mortality. 

Furthermore, no differences in outcomes are seen after 3 to 6 months as compared with 12 

months of DAPT in stable patients undergoing drug-eluting stent implantation (Figure 5). 

Together, these findings support the new Class I recommendation for using DAPT for 6 

months after drug-eluting stent implantation in stable patients.51
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Absolute Differences—To provide a practical perspective for the clinician, we calculate 

absolute event rates and numbers needed to treat (NNTs).52 For every 1000 patients treated 

with 18 to 48 months compared with 3 to 6 months of DAPT, there are 6 more major bleeds 

(95% BCI, 4–14) but 9 fewer myocardial infarctions (4–16) and 4 fewer stent thromboses 

(3–8) for each additional 12 months of therapy.52 As DAPT is prolonged, the corresponding 

NNTharm for major bleeding is 165 (95% BCI, 65–537), the NNTbenefit for preventing 

myocardial infarction is 117 (77–726), and the NNTbenefit for preventing stent thrombosis is 

282 (213–514). The findings support a Class IIb recommendation to prolong DAPT >12 

months.51

The foregoing analysis uses evidence from RCTs, but in most areas of cardiovascular 

investigation, RCT evidence is limited or absent. In the next section, we illustrate how 

Bayesian methods synthesize evidence from disparate sources.

Should Noninfarct PCI Be Performed During ST-Segment–Elevation Myocardial Infarction?

Bayesian Cross-Design Meta-Analysis—Outcomes after culprit vessel-only or 

multivessel-vessel PCI in patients with ST-segment–elevation myocardial infarction and 

multivessel CAD have been compared in studies of multiple designs: RCTs, matched cohort, 

and observational studies.53 RCTs are commonly viewed as having the highest quality, but 

cohort studies may be more representative of clinical practice.10

Traditional approaches using stratified meta-analyses can determine whether treatment 

outcomes are sensitive to study type. In stratified analyses,53 observational studies tend to 

show that the culprit vessel-only arm has lower mortalities than the multivessel arm, 

although confounding cannot be excluded, whereas RCTs tend to show that the multivessel 

arm has lower event rates than the culprit vessel-only arm. A strategy using stratified meta-

analyses may not yield a single inference for the overall treatment effect, however, because 

study designs are different and a power problem might arise from inclusion of small RCTs. 

Another approach is to use Bayesian cross-design methods.3,30,54

Hierarchical Model for Analyzing Evidence From Different Study Designs—To 

compare mortality outcomes from all sources, we create a 3-level hierarchical model 

illustrated in Figure 6 and detailed in Appendix E in the Data Supplement that analyzes 

overall outcome as a function of treatment effect and study type. In the model, we assume3:

loge ORi k θi k , si k
2 independent N θi k , si k

2 ,

θi k θk, τk
2 independent N θk, τk

2 ,

θk θ, σ2 independent N θ, σ2 ,

(3)

where θi(k) and si k
2  denote the study-level treatment effect and its variance, θk is the study-

type average effect, τk
2 is the between-study variance for each design, θ is the global 
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treatment effect viewed as an average across all possible studies (nested within all possible 

designs), and σ2 is the between-study type variance for RCTs (k=1), matched cohort (k=2), 

and unmatched cohort (k=3) studies. The first 2 equations define the random-effects meta-

analysis models for studies separately within each design. The last equation treats the study-

type averages as random effects from a normal distribution centered at the global average. 

The hierarchical model assumes that the θ
kS are exchangeable and conditional on θ and σ2, 

whereas a traditional approach would have assumed that they are fixed and independent 

parameters.3,54

Using published guidance3,54 to select priors that provide no advantage for 1 treatment 

strategy or study type over another (Table), we obtain a posterior inference that shows no 

credible difference in the end point of all-cause mortality after culprit artery-only compared 

with multivessel PCI (OR, 1.10; 95% BCI, 0.74–1.51), as shown in Figure 7. When we use 

priors that weight RCTs over observational studies by a factor that ranges from 1 to 5, we 

obtain an estimate closer to 1.00 (OR, 1.05; 95% BCI 0.64–1.48).30

The overall findings support the decision made by members of the writing committee to 

replace the old Class III prohibition against nonculprit PCI17 with a new Class IIb 

recommendation allowing nonculprit artery PCI.55 The process of synthesizing RCT and 

observational evidence does not change the overall estimate of the mortality difference 

between the different strategies but rather increases the confidence that no difference likely 

exists.3

Conclusions

Analogous to making a clinical diagnosis, deciding what works in clinical investigation can 

be challenging. Bayesian analysis quantifies the probability that a study hypothesis is true 

when it is tested with new data. Although P values may ensure that trial results in which we 

are 95% confident are correct 95% of the time in the long run,31 P values cannot capture the 

effect size or the evidential meaning of an outcome.6 Bayesian analysis replaces the 

dependence on a single number and moves the interpretation of trial results into the world of 

probabilities based on prior knowledge.6

By giving writing committees tools for dealing with the uncertainty of trial results, Bayesian 

methods are useful for analyzing observational studies,56 mega-trials,6 and noninferiority 

trials by treating H0 and HA equivalently by accepting the null rather than failing to reject it. 

Because many experts rightly demand a higher threshold than 2 SEs in post hoc exercises 

like meta-analyses, Bayesian methods may raise the bar for declaring that a finding is 

significant.31

In presenting vignettes in this review that illustrate the use of Bayesian approaches for the 

analysis of trial results, we have tried to strike a balance between the past and the present, 

between the practical and the academic, and between common sense and the pedantic, in the 

hope that we can move the search for what works in healthcare from the realm of chance to 

the science of probability.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bayesian triplot of mortality risk after percutaneous coronary intervention (PCI) or coronary 

artery bypass graft (CABG) surgery in diabetic patients with multivessel coronary artery 

disease. A, Each triplot contains 3 normal distributions and thus illustrates a conjugate-

normal analysis, plotted on the odds ratio (OR) scale and on the θ, or loge(OR), scale. The 

prior distribution (blue), represented by a bell-shaped curve derived from evidence from 8 

older trials,22–29 strongly suggests a mortality advantage for CABG over PCI. The 

likelihood (red), representing the results from FREEDOM trial (Future Revascularization 

Evaluation in Patients with Diabetes Mellitus: Optimal Management of Multivessel 

Disease),18 still favors CABG but less so than the prior. Bayesian methods, which combine 

the likelihood with the prior to produce the posterior distribution (black), confirm a mortality 

advantage for CABG. B, A skeptical prior (dashed blue), which is centered on an OR of 

1.00, results in a posterior distribution that shifts to the right and provides borderline support 

for a surgical advantage. All curves normalized to 1. Part figure (A) is adapted with 

permission from the American Heart Association.20,21 Authorization for this adaptation has 

been obtained both from the owner of the copyright in the original work and from the owner 

of copyright in the translation or adaptation.

Bittl and He Page 14

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Traditional and Bayesian hierarchical meta-analysis of subgroup and trial evidence 

comparing percutaneous coronary intervention (PCI) or coronary artery bypass graft 

(CABG) surgery in diabetic patients with multivessel coronary artery disease. Adapted with 

permission from the American Heart Association.21 Authorization for this adaptation has 

been obtained both from the owner of the copyright in the original work and from the owner 

of copyright in the translation or adaptation. CI indicates confidence interval; and OR, odds 

ratio.
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Figure 3. 
Comparison of posterior probability distributions derived from different prior probabilities 

distributions. CABG indicates coronary artery bypass graft; and PCI, percutaneous coronary 

intervention.
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Figure 4. 
Network meta-analysis of dual antiplatelet therapy (DAPT). Each node represents a different 

DAPT duration and each line a different pairwise comparison.

Bittl and He Page 17

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2019 March 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Traditional network meta-analyses of prolonged dual antiplatelet therapy (DAPT). The 

forest plots (left) contain several 12-mo-versus-12-mo comparisons of outcomes, whereas 

the caterpillar plots (right) compare outcomes after DAPT durations that do not overlap. All 

studies identified and referenced in Figure 4. CI indicates confidence interval.
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Figure 6. 
Hierarchical model. At the individual study level in the bottom row, the parameters include 

ORi(k) and variances s2 from each study i=1,…, 18; in the middle level, the mean study-type 

effects θi and variances τk
2 from each study type k=1,…, 3; and, in the top level, the overall 

treatment effect θ and its variance σ2. OR indicates odds ratio. Adapted with permission 

from John Wiley and Sons.30 Authorization for this adaptation has been obtained both from 

the owner of the copyright in the original work and from the owner of copyright in the 

translation or adaptation.
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Figure 7. 
Mortality after multivessel or culprit vessel-only intervention for ST-segment–elevation 

myocardial infarction. Information sources segregated by study type are plotted on the odds 

ratio (OR) scale and on the θ scale, which is equivalent to loge(OR). Data from randomized 

controlled trials (red), which are represented by a bell-shaped curve to show the distribution 

of all possible ORs, tend to favor the strategy of multivessel intervention, whereas data from 

matched cohort studies (purple) and from the unmatched observational studies (blue) tend to 

favor the strategy of culprit vessel-only intervention. The final synthesis (black), which 

combines the data from all studies and generates the posterior median OR and 95% 

Bayesian credible interval (data labels), suggests no plausible difference in mortality rates 

after a strategy of multivessel or culprit artery-only intervention at the time of primary 

intervention. All curves are normalized to 1. Adapted with permission from John Wiley and 

Sons.30 Authorization for this adaptation has been obtained both from the owner of the 

copyright in the original work and from the owner of copyright in the translation or 

adaptation.
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